Inequivalent complexity criteria for free boundary minimal surfaces
نویسندگان
چکیده
منابع مشابه
On a free boundary problem and minimal surfaces
From minimal surfaces such as Simons’ cone and catenoids, using refined Lyapunov-Schmidt reduction method, we construct new solutions for a free boundary problem whose free boundary has two components. In dimension 8, using variational arguments, we also obtain solutions which are global minimizers of the corresponding energy functional. This shows that Savin’s theorem [43] is optimal.
متن کاملMinimal Surfaces with Planar Boundary Curves
In 1956, Shiffman [Sh] proved that any compact minimal annulus with two convex boundary curves (resp. circles) in parallel planes is foliated by convex planar curves (resp. circles) in the intermediate planes. In 1978, Meeks conjectured that the assumption the minimal surface is an annulus is unnecessary [M]; that is, he conjectured that any compact connected minimal surface with two planar con...
متن کاملBoundary Behavior of Nonlocal Minimal Surfaces
We consider the behavior of the nonlocal minimal surfaces in the vicinity of the boundary. By a series of detailed examples, we show that nonlocal minimal surfaces may stick at the boundary of the domain, even when the domain is smooth and convex. This is a purely nonlocal phenomenon, and it is in sharp contrast with the boundary properties of the classical minimal surfaces. In particular, we s...
متن کاملDigital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملUniqueness Theorems for Free Boundary Minimal Disks in Space Forms
We show that a minimal disk satisfying the free boundary condition in a constant curvature ball of any dimension is totally geodesic. We weaken the condition to parallel mean curvature vector in which case we show that the disk lies in a three dimensional constant curvature submanifold and is totally umbilic. These results extend to higher dimensions earlier three dimensional work of J. C. C. N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2020
ISSN: 0001-8708
DOI: 10.1016/j.aim.2020.107322